Ex2.
Working with Numpy arrays
Aim:
Working with different instructions used in Numpy
array
Procedure
ü Do
the following function
ü To
print the array print(a)
ü To
print the shape of the array print(a.shape)
ü To
the function return the number of dimensions of an array. print(a.ndim)
ü This
data type object (dtype) informs us about the layout of the array. print(a.dtype.name)
ü This
returns the size (in bytes) of each element of a NumPy array print(a.itemsize)
ü This
is the total number of elements in the ndarray. print(a.size)
Program
import numpy as np
a = np.arange(15).reshape(3, 5)
To
print the array
print(a)
To
print the shape of the array
print(a.shape)
To
the function return the number of dimensions of an array.
print(a.ndim)
This
data type object (dtype) informs us about the layout of the array
print(a.dtype.name)
This
returns the size (in bytes) of each element of a NumPy array
print(a.itemsize)
This is the total number of elements in
the ndarray.
print(a.size)
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])
x = np.where(arr%2 == 1)
print(x)
Slice
elements from index 1 to index 5 from the following array
print(arr[1:5])
Get
third and fourth elements from the following array and add them.
print(arr[2] + arr[3])
Write a NumPy program to convert the
values of Centigrade degrees into Fahrenheit degrees and vice versa. Values are
stored into a NumPy array.
import
numpy as np
fvalues
= [0, 12, 45.21, 34, 99.91, 32]
F =
np.array(fvalues)
print("Values in
Fahrenheit degrees:")
print(F)
print("Values
in Centigrade degrees:")
print(np.round((5*F/9 - 5*32/9),2))